پیش بینی قیمت سهام با رویکرد ترکیبی شبکه عصبی مصنوعی و الگوریتم رقابت استعماری مبتنی بر تئوری آشوب
Authors
Abstract:
یکی از گزینههای موجود جهت سرمایه گذاری نقدینگی، بورس و اوراق بهادار میباشد. با توجه به ارتباطات غیرخطی موجود میان متغیرهای موثر بر قیمت سهام، شبکه های عصبی مصنوعی یکی از مناسب ترین رویکردهای موجود جهت پیشبینی قیمت سهام می باشند. در این مقاله سعی شده تا از طریق ترکیب نگاشتهای آشوبی و الگوریتم رقابت استعماری، زاویه حرکتی مستعمرات به سمت استعمارگر اصلاح شده و به این ترتیب احتمال قرارگیری در دام نقطه بهینه محلی تا حد ممکن کاهش یابد. هدف این مقاله معرفی و مقایسه عملکرد رویکرد پیشنهادی با سایر الگوریتمهای بهینهسازی جستجوی پیشین میباشد. از اینرو با استفاده از اطلاعات قیمتی روزانه سهام شرکت ایران خودرو بین سالهای 1389 تا 1395 به آموزش شبکه عصبی با الگوریتمهای بهینهسازی مختلف پرداختیم. جهت ارزیابی میزان عملکرد رویکردها، از سه دیدگاه: میزان دقت پیشبینی(آمارههای اندازهگیری خطاR2,RMSE)، میزان حافظه مصرفی و زمان اجرایی استفاده شد، نتایج حاکی از آن است که رویکرد پیشنهادی از عملکرد بهتری نسبت به سایر رویکردهای پیشین برخوردار میباشد.
similar resources
مدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
full textپیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی
In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...
full textشناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین رو...
full textکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
full textارزیابی مدلهای شبکه عصبی مصنوعی ایستا و پویا در پیش بینی قیمت سهام
پیشبینی آینده در عرصه پویای اقتصاد و بازارهای مالی از جمله بازار بورس به یکی از مهمترین مسائل درعلوم مالی ارتقاء یافته است. همچنین، در دههی اخیر مدلهای شبکه عصبی به علت عملکرد واقع بینانهتر اینمدلها مورد توجه محققین قرار گرفته و از انواع مختلف آنها برای پیشبینی استفاده شده است. اکنون این سئوالمطرح است که، کدام یک از این مدلها قدرت بالاتری برای تبیین فرآیندهای آتی بورس را دارا میباشد؟ در( همین ر...
full textترکیب شبکه های عصبی برای پیش بینی قیمت سهام
در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...
full textMy Resources
Journal title
volume 5 issue 3
pages 27- 73
publication date 2017-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023